Query and processing tools are essential components of any data analytics infrastructure. They enable organizations to extract insights from large volumes of data, perform complex computations, and support decision-making processes. These tools can be broadly categorized into five main areas: query engines, stream processing, batch processing, dataframe processing, and datawarehouse & OLAP.
They can be broadly categorized into five main areas:
Here is a summary table of the main query and processing tools we have identified.
| Tool | Subcategory | Creation Date | Stars | Forks | Contributors | Last Release | Latest Commit | Meets Criteria* | Link | |—|—|—|—|—|—|—|—|—|—| | Apache Calcite | Query Engine | 25/06/2014 | 4938 | 2447 | 328 | N/A | 17/09/2025 | Yes | https://github.com/apache/calcite | | Apache Drill | Query Engine | 05/09/2012 | 1991 | 985 | 161 | 29/06/2025 | 16/09/2025 | Yes | https://github.com/apache/drill | | Datafusion | Query Engine | 17/04/2021 | 7743 | 1639 | 416 | N/A | 17/09/2025 | Yes | https://github.com/apache/arrow-datafusion | | DuckDB | Query Engine | 26/06/2018 | 32860 | 2591 | 339 | 16/09/2025 | 17/09/2025 | Yes | https://github.com/duckdb/duckdb | | Hydra | Query Engine | 22/07/2022 | 2985 | 92 | 16 | 01/04/2024 | 10/02/2025 | No | https://github.com/hydradatabase/hydra | | PostgreSQL | Query Engine | 21/09/2010 | 18547 | 5112 | 42 | N/A | 17/09/2025 | Yes | https://github.com/postgres/postgres | | Presto | Query Engine | 09/08/2012 | 16502 | 5500 | 324 | 27/08/2025 | 17/09/2025 | Yes | https://github.com/prestodb/presto | | Trino | Query Engine | 19/01/2019 | 11881 | 3334 | 333 | N/A | 17/09/2025 | Yes | https://github.com/trinodb/trino |
Tool | Subcategory | Creation Date | Stars | Forks | Contributors | Last Release | Latest Commit | Meets Criteria* | Link |
---|---|---|---|---|---|---|---|---|---|
Apache Flink | Stream Processing | 07/06/2014 | 25274 | 13782 | 286 | N/A | 17/09/2025 | Yes | https://github.com/apache/flink |
Apache Kafka | Stream Processing | 15/08/2011 | 30921 | 14636 | 345 | N/A | 17/09/2025 | Yes | https://github.com/apache/kafka |
Apache Samza | Stream Processing | 14/03/2015 | 832 | 334 | 132 | N/A | 02/05/2025 | Yes | https://github.com/apache/samza |
Apache Storm | Stream Processing | 05/11/2013 | 6653 | 4060 | 280 | 03/08/2025 | 15/09/2025 | Yes | https://github.com/apache/storm |
Materialize | Stream Processing | 22/02/2019 | 6111 | 478 | 146 | 14/08/2024 | 17/09/2025 | Yes | https://github.com/MaterializeInc/materialize |
Redpanda | Stream Processing | 02/11/2020 | 11004 | 675 | 146 | 11/09/2025 | 17/09/2025 | Yes | https://github.com/redpanda-data/redpanda |
Tool | Subcategory | Creation Date | Stars | Forks | Contributors | Last Release | Latest Commit | Meets Criteria* | Link |
---|---|---|---|---|---|---|---|---|---|
AmphiETL | Batch Processing | 20/03/2024 | 1098 | 74 | 8 | N/A | 12/09/2025 | Yes | https://github.com/amphi-ai/amphi-etl |
Apache Beam | Batch Processing | 02/02/2016 | 8298 | 4403 | 308 | 15/09/2025 | 17/09/2025 | Yes | https://github.com/apache/beam |
Apache Hop | Batch Processing | 24/09/2019 | 1231 | 402 | 93 | 08/08/2025 | 17/09/2025 | Yes | https://github.com/apache/hop |
Apache Spark | Batch Processing | 25/02/2014 | 41906 | 28826 | 333 | N/A | 17/09/2025 | Yes | https://github.com/apache/spark |
dbt core | Batch Processing | 10/03/2016 | 11392 | 1802 | 306 | 10/09/2025 | 17/09/2025 | Yes | https://github.com/dbt-labs/dbt-core |
Talaxie | Batch Processing | 28/05/2024 | 4 | 2 | 142 | N/A | 20/10/2024 | No | https://github.com/Talaxie/tdi-studio-se |
Tool | Subcategory | Creation Date | Stars | Forks | Contributors | Last Release | Latest Commit | Meets Criteria* | Link |
---|---|---|---|---|---|---|---|---|---|
Dask | Dataframe Processing | 04/01/2015 | 13487 | 1796 | 416 | 16/09/2025 | 16/09/2025 | Yes | https://github.com/dask/dask |
Ibis Project | Dataframe Processing | 17/04/2015 | 6102 | 665 | 202 | 28/07/2025 | 17/09/2025 | Yes | https://github.com/ibis-project/ibis |
Pandas | Dataframe Processing | 24/08/2010 | 46597 | 18963 | 413 | 21/08/2025 | 17/09/2025 | Yes | https://github.com/pandas-dev/pandas |
Polars | Dataframe Processing | 13/05/2020 | 35359 | 2397 | 443 | 16/09/2025 | 17/09/2025 | Yes | https://github.com/pola-rs/polars |
Tool | Subcategory | Creation Date | Stars | Forks | Contributors | Last Release | Latest Commit | Meets Criteria* | Link |
---|---|---|---|---|---|---|---|---|---|
Apache Hive | Datawarehouse & OLAP | 21/05/2009 | 5792 | 4768 | 257 | N/A | 16/09/2025 | Yes | https://github.com/apache/hive |
Apache Impala | Datawarehouse & OLAP | 13/04/2016 | 1242 | 537 | 173 | 07/03/2025 | 17/09/2025 | Yes | https://github.com/apache/impala |
Apache Kylin | Datawarehouse & OLAP | 03/01/2015 | 3748 | 1520 | 60 | 06/04/2025 | 17/09/2025 | Yes | https://github.com/apache/kylin |
ClickHouse | Datawarehouse & OLAP | 02/06/2016 | 42935 | 7663 | 297 | 16/09/2025 | 17/09/2025 | Yes | https://github.com/ClickHouse/ClickHouse |
Doris | Datawarehouse & OLAP | 10/08/2017 | 14277 | 3561 | 336 | 03/09/2025 | 17/09/2025 | Yes | https://github.com/apache/doris |
Druid | Datawarehouse & OLAP | 23/10/2012 | 13828 | 3758 | 355 | 11/08/2025 | 17/09/2025 | Yes | https://github.com/apache/druid |
Pinot | Datawarehouse & OLAP | 19/05/2014 | 5901 | 1416 | 367 | 15/09/2025 | 17/09/2025 | Yes | https://github.com/apache/pinot |
StarRocks | Datawarehouse & OLAP | 04/09/2021 | 10671 | 2138 | 401 | 09/09/2025 | 17/09/2025 | Yes | https://github.com/StarRocks/starrocks |
*Criteria: >40 contributors, >500 stars, and recent releases/commit
These tools offer a wide range of capabilities for querying and processing data in various scenarios. When choosing a tool, consider factors such as:
Remember that different categories of tools can be combined to create comprehensive data processing pipelines:
The choice of tools can significantly impact the performance and capabilities of your data analytics infrastructure. It’s often beneficial to combine multiple tools to address different aspects of your data processing needs while maintaining a balance between functionality, complexity, and maintainability.
The open-source community has developed numerous solutions for various aspects of data handling, including: